
Introduction

Before the invention of the personal computer, type was set by
experts. A typesetter was a tradesman who’s only concern was
the proper treatment of the letters and numbers on the page. For
better or worse, the trade of typesetting has all but disappeared,
and most type is now set by amateurs on personal computers. This
paradigm shift has fostered some of the most atrocious typography
disasters in the history of the craft. Why? For a simple reason: in the
same way that an architect would be ill-equipped to install an intri-
cate Spanish tile floor, most designers have virtually no capability to
properly set type. To complicate the matter even further, type is no
longer confined to the printed page; it now travels at the speed of
the ether from servers all over the world to millions upon millions of
desktop computers in every home and school. Type must now exist
in two worlds, one of ink and one of pixels. With shifting paradigms,
expanding media demands, and ever-increasing technological
innovations and complications, how can any one designer be ex-
pected to master the skill of typesetting in a digital world?

While this paper will touch on many topics that apply to traditional
typography as well as generic web design, the main focus will be
on increasing the level of typographic awareness for those web
designers using Macromedia Flash as a component of their skill
set.

There are many convincing arguments to be made both for and
against using Flash to develop content for the world wide web.
Regardless of which side you happen to agree with, one thing is for
certain; there is a general lack of sensitivity to the treatment of type
in Flash-based projects. Be it the fault of inexperienced designers,
or a lack of typesetting control and integration within the program,
the result is an obvious typography disaster. Since users have
no control over the interface and functionality of the Macromedia
Flash application, focus will be on increasing the user’s skills when
interacting with the program’s type features.

Theoretical Considerations

Attributes of Type
A careful distinction must be made before this topic is approached
further. The word “type” carries some connotative and denotative
ambiguity. In order to ensure clarity, the phrase “attributes of
type” will be used to refer to the typographic elements of a project
and the typographic decisions made by the designer, i.e.: font
choices, size of copy, weight of subheadings, etc. and will not
refer to specific properties of typefaces such as x-height, slope,
ornateness, etc. With that said, when setting type, designers must
consider, and ultimately balance, several attributes:

Aesthetic Appeal
Type should be pretty. If it isn’t pretty, it’s not going to inspire
anyone to want to read it. Whenever possible, type should be
inviting, exciting, and beautiful.

Legibility
Type must be legible. After you’ve convinced someone to read it,
you have to deliver it in a way that isn’t painful to endure over the
long haul. Aesthetic appeal will capture readers, but legibility will
keep them.

Usability
Usability refers to a user’s ability to interact with your text and
incorporate it into their computing environment. This is a unique
concern of electronic text. Some factors that affect usability are
selectability, browser-side control of type size rendering, <alt> tags
for rasterized type, and clearly defined hyperlinks within text fields.

Content
Robert Bringhurst wrote “The typographer’s one essential task
is to interpret and communicate the text. Its tone, its tempo, its
logical structure, its physical size, all determine the possibilities of
its typographic form” (1999). Put simply, the typographic decisions
you make must portray the text in an authentic way, making sure to
give the reader no false pretenses.

These four attributes constantly collide with each other and demand
consideration from the designer. Too much bias in either direction
may produce type that is functional but not interesting, or perhaps
beautiful but unreadable—or even worse—totally misrepresentative
of it’s text. A balance must be achieved between form and function,
experimentation and convention, pursuit of beauty and pursuit of
truth.

Technical Considerations

Jaggies and Fuzzies
Flash makes it easy to display a wide variety of typefaces on
anyone’s computer without installing fonts or consuming excessive
bandwidth. Flash can embed a font within a shockwave movie file
and display that font’s characters on a client machine regardless
of whether the client has the font installed or not. This is a nice
feature for designers who are looking to break out of the “Times
New Roman/Arial” rut.

Unfortunately, embedding a font within a shockwave movie
mandates that the font be rendered with an anti-alias. This raises
the question, “To Embed, or Not to Embed?” Which is, in this
scenario, the same as asking “To Anti-Alias or Not to Anti-Alias?”

Typesetting with Flash MX
M.D. Rowland

Abstract
A common misnomer states that there are only two fonts on the web: Times New Roman and Arial. While it is true that web designers often
select their typefaces from a set of de facto standards, there are many sophisticated ways to practice the art of typography on web projects.
Web designers must not ignore type. Even though there are significantly fewer years of historical examples to draw on, digital type should be
approached with the same careful attention to detail as traditional type. This paper will strive to answer the question: how can web designers
using Macromedia Flash produce legible, credible, and beautiful type in their projects?

The anti-alias dilemma is a hot topic among professionals who
interact with digital type such as web & multimedia designers, and
software developers. To properly display a font on-screen, the
font’s vectors must either be smoothed with an anti-alias or remain
jagged due to the limitations of the screen’s resolution. Which is
better, the jagged edges, or the smooth halo around each letter?

Let’s consider the attributes of type and what effect anti-alias has
on them:

Anti-Alias: Effects on Aesthetics
While ultimately a matter of personal preference, most users and
experts would agree that a well-rendered anti-alias is generally
more visually appealing than a jagged vector outline. In any case,
here are conflicting industry opinions:

Nicholas Negroponte (1994) has long called for all text to be anti-
aliased. In the article “Aliasing: the blind spot of the computer
industry,” he says:

What puzzles me the most is that we seem to have educated
an entire generation of computer scientists who don’t fully
understand this simple phenomenon, and we seem to have
trained the public to take it for granted. Perhaps it’s time to
make [orthochromatic] graphics a violation of Occupational
Safety and Hazards Administration minimum standards for
display quality. Or, perhaps the Environmental Protection
Agency can declare this condition to be visual pollution. The
point is that it must stop. (1994).

The November 13, 2000, issue of the Independent takes the
opposite extreme about the anti-aliased rendering of type in Mac
OS X:

It looked like someone had smudged the screen with
margarine. Other people can bear [anti-aliasing], but I hate
it; only by choosing a tiny size of a non-aliased font could
I begin to write without feeling uncomfortable (Independent,
2000).

The debate rages on, but for now let’s simplify the issue. The
anti-alias rendering technology used by Flash is ugly. anti-aliased
letters are supposed to have a subtle ‘halo’ that smooths the
jagged edges of the vector outlines. In Flash, particularly at small
and medium sizes, the subtle halo is more like a disturbing aura of
blurriness.

At larger sizes, the anti-alias rendering in Flash is quite pleasing.
For this reason, it’s perfectly acceptable to embed fonts that will be
used as headings or display faces.

Anti-Alias: Effects on Legibility
In his recent study Legibility and Comprehension of Onscreen
Type, Dr. Scott Chandler wrote extensively about the effects of
anti-aliasing on legibility of onscreen type. Chandler’s research
suggests that at smaller sizes, serifed faces are more legible when
rendered with an anti-alias, while sans-serif faces are slightly more
legible when rendered without an anti-alias. The research also
indicates that at smaller sizes, a non-anti-aliased sans-serif face
is more legible on screen than either an anti-aliased sans serif or

serif face (Chandler, 2002). While this statement makes sweeping
generalizations about a complicated topic with many variables, it is
consistent with Dr. Chandler’s findings.

Dr. Chandler’s research methods were exhaustively accurate
and precise; however, he did not use the anti-alias rendering
technology inside of Flash as a part of his study. It is this author’s
opinion (which is shared by many industry professionals) that the
anti-alias rendering technology used by Flash is vastly inferior to
the anti-alias rendering engines within Adobe Photoshop, Adobe
Acrobat, and other pieces of software. After reviewing samples of
anti-alias rendering of Times New Roman generated by Flash MX,
Chandler had the following post hoc comments to add concerning
the anti-alias rendering of type within Flash:

Without doing a comprehensive analysis such as that
conducted for my dissertation, several attributes of Flash anti-
aliasing are obvious. The anti-alias rendering appears inferior
to other rendering techniques. The rendering itself seems
awkward and unprofessional. Most rendering technologies
work hard to consistently align type to a grid, that isn’t
evident from this font sample. Although this can be the result
of badly drawn glyphs, the misalignment to the baseline and
variance of x-height across glyphs is an indication that the
rendering is poor. A font like TrueType Times New Roman
is almost certainly well hinted, making this sort of rendering
inexcusable. (Chandler, 2003)

Anti-Alias: Effects on Content
The decision to render type with or without an anti-alias is largely
independent of the task of picking a font that accurately reflects
the content. Decisions made about this attribute may be largely
overruled by decisions made in other steps, for example; to ensure
maximum legibility and comprehension, you may decide against
embedding type. This forces you to use a universal font that will be
available on a vast majority of all client machines. These universal
fonts may not be an ideal choice for complementing the text,
but picking a satisfactory candidate from what’s available is still
possible.

Pixel-Based Fonts
Because of Flash’s anti-alias rendering limitations on smaller type
sizes, many type foundries are designing fonts specifically for use
within Flash. These pixel-based TrueType fonts are intended to be
used only at one size and dramatically reduce the negative aspects
of Flash anti-alias rendering at smaller type sizes when properly
used. Visit www.miniml.com for examples.

Summary
Critics of Flash have been quick to point out the shortcomings of
the appearance, and lack of legibility of small and medium sized
anti-aliased type rendered by Flash. For this reason, when setting
smaller type sizes, it is almost always better to use a standard web
font as a device font within Flash and allow the client machine to
render the type. When setting static text at small sizes, you should
select a universal font such as Arial, Times New Roman, or Verdana
and check the use device fonts box under the text properties
in the property inspector. If you’re setting dynamic text at smaller
sizes, you should once again select a universal font and then click
on Character and select No Characters. Pixel-based fonts

are an effective alternative to using device fonts for smaller type
sizes.

Leading, Kerning, Tracking & Other Type Controls
Macromedia has made a decision within Flash to abandon much
of the traditional typographic terminology that has been used by
the industry since the days of Gutenberg. In addition, the type
control interfaces within Flash are dissimilar to any other graphics
application.

First, there are no precise kerning controls. This is a huge omission
and severely cripples the amount of typographic control provided
to designers by Flash. There is an “auto kerning” feature, but it
appears to have little or no effect on most passages of type.

Another typographic shortcoming is the lack of paragraph controls.
Flash includes a rudimentary leading control called “line spacing,”
and some indentation and margin controls under Format inside
text properties, but is weak at controlling hyphenation, justification,
and composition. The controls are functional but far from perfect.
The Flash application could be greatly improved by the integration
of advanced type controls and formatting features.

Lack of Professional Type Controls:
Effects on Attributes of Type
It’s easy to see how the lack of professional type controls has
a negative effect on the attributes of type set with Flash. More
intelligent paragraph composition would ultimately translate into
prettier passages of type. The lack of precision kerning controls
severely undermines legibility.

Selectable Text
Another important technical consideration is the inclusion of
selectable text. Selectable text may seem like a trivial issue, but
it’s actually quite important. Users visiting your site are mostly
concerned with content which makes the ability to select and
copy/paste that content into other applications is an important
usability feature. It’s easy enough to turn on selectable text and it
has no significant technical drawbacks, so always make an effort
to make your body copy and important text selectable.

Independently Formatted Printable Objects
An often overlooked but high-powered feature of Flash MX is
the ability to customize printable content independently of your
onscreen content. Printing web pages is an issue that’s plagued
designers from the very beginning of the world wide web—so
much that many have all but given up on the idea of creating web
pages that work both on-screen and in print.

The problem is one of formatting: computer screens are wide.
Paper is tall. Web sites are designed for wide computer screens
and have to be fitted on to tall pieces of paper with conflicting
aspect ratios.

Flash has an innovative feature which allows designers to include
independently formatted content specifically for printing purposes.
With a small amount of effort, a designer can repurpose an entire
web site’s content to a portrait aspect ratio for the printed page.
This allows designers final control over how their web pages will

print, taking away print formatting decisions from the end-user’s
web browser and eliminating the conflicting aspect ratio problem.

Independently Formatted Printable Objects:
Effects on Attributes of Type
Independently formatted printable objects are a key usability
concern. Different users may choose to interact with your text in
different ways. Giving them both high-quality on-screen and print
options makes your text more usable. Less apparent are the effects
on aesthetics and legibility. Not having to concern oneself with dual-
formatting a single web page that works on screen and in print
leads to a wider array of design options. Separating onscreen and
print versions of content could potentially have positive impacts on
your text’s aesthetic appeal and legibility for both versions.

Conclusion

Typesetting under the best of circumstances is tough. Factoring
in confusing font rendering technologies, lack of professional type
controls, and quirky usability features makes it all the more difficult.
Daunting as it may be, properly setting type inside of your Flash
projects is imperative to ensure effective communication of your
ideas.

References

Bringhurst, R. (1999), The elements of typographic style
(2nd ed,), Vancouver, B.C., Canada: Hartley and Marks.

Chandler, Scott B. (2002). Legibility and Comprehension of
Onscreen Type. Unpublished Dissertation.

Chandler, Scott B. (2003). Flash MX Anti-Alias Rendering,
e-mail response. Retrieved February 3, 2003.

Independent. (2000). Return of the Mac, new and
improved. Retrieved November 19, 2000, from http:
//www.independent.co.uk/news/Digital/Features/2000-
11/mac131100.shtml

Negroponte, N. (1994). Aliasing: The blind spot of the
computer industry. Retrieved May 20, from http://
www,wired.com/wired/archive/2.01/negroponte_pr.html

